
International Journal of Scientific & Engineering Research Volume 2, Issue 10, Oct-2011 1
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

Indexing Relational Databases for Efficient
Keyword Search

Phyo Thu Thu Khine, Htwe Pa Pa Win, Khin New Ni Tun

Abstract— Keyword search is a widely accepted mechanism for querying in Information Retrieval (IR) systems and Internet search en-
gines on the Web. They offer convenient keyword-based search interfaces. But searching in relational database systems the user needs to
learn SQL and to know the schema of the underlying data even to pose simple searches. A system that can eliminate these requirements is
needed. Therefore we proposed an efficient keyword-based search system for relational databases. The proposed system provides online
search and offline indexing method to do efficient keyword based search. Firstly, a relational database is indexed in advance using the pro-
posed indexing algorithm. At searching time, the index supports keyword-based searches with interactive response. The index size is ma-
nageable and database updates do not significantly hinder query performance. As long as the database table records can be extended, this
system can be easily extendable for further searching records from tables. Experimental results show that the proposed algorithm provides
less storage space and short offline indexing time and also reduces query processing time significantly compared to previous approaches.

Index Terms—search, relational database, information retrieval, indexing, searching, ranking.

—————————— ——————————

1 INTRODUCTION
eyword search provides a simple yet effective way for the
users to query and explore the underlying documents. The
last decade has seen ever expanding adoption of the key-

word search technology, and it has become a de facto standard
for user interaction on the World Wide Web (WWW). In the
recent years, there has been a great deal of research and devel-
opment activities on extending keyword search capabilities to
handle relational data, the dominant form in which business
data are stored. One important advantage of keyword search is
that it enables users to search for information without having to
know complex query languages such as SQL and XQuery or
prior knowledge about the structure of the underlying data.
Keyword search provides an alternative means of querying re-
lational databases, which is simple to most internet users. It
lowers the access barrier for average users.

The alternative approaches of keyword search on relational
databases are classified into candidate network based methods
[8, 9, 10, 11], graph based algorithms [6, 12], and tuple unit
based approaches [1, 2, 4, 5]. Li et al. [2] (Su et al. [1]) proposed
the concept of tuple units (text objects) to efficiently answer
keyword queries, which are composed of the most relevant
tuples. The tuple units can be generated and indexed to im-
prove search efficiency. Most previous approaches to keyword-
based search in structured databases (reviewed in Section 2)
perform a significant amount of database computation at search
time. Our offline indexing approach does all significant work in
advance so it can provide interactive answers.

This paper is organized as follows: Section 2 summarizes the
literature reviews. Section 3 shows the overview of proposed
system. Section 4 shows experimental results and section 6 is
the conclusion and future work.

2 LITERATURE REVIEW
Verity [15] crawls the content of relational databases and

builds an external text index for keyword searches, as well as
external auxiliary indexes to enable parametric searches. Da-
taSpot [16] extracts database content and builds an external,
graph-based representation called a hyperbase to support
keyword search. Graph nodes represent data objects such as
relations, tuples, and attribute values. Query answers are con-
nected subgraphs of the hyperbase whose nodes contain all of
the query keywords.

DbSurfer [17] indexes the textual content of each relational
tuple as a virtual web page. For querying and navigation, the
database foreign-key constraints between tuples are treated as
hyperlinks between virtual web pages. Given a keyword
query, the system computes a ranked set of virtual web pages
that match at least one keyword. Then a best-first expansion
algorithm finds a ranked set of navigation paths originating
from the starting web pages.

Three systems, DBXplorer [8], BANKS [6], and DISCOVER
[9], share a similar approach: At query time, given a set of
keywords, first find tuples in each relation that contain at least
one of the keywords, usually using auxiliary indexes. Then
use graph-based approaches to find tuples among those from
the previous step that can be joined together, such that the
joined tuple contains all keywords in the query. All three sys-
tems use foreign-key relationships as edges in the graph, and
point out that their approach could be extended to more gen-
eral join conditions.

Su et al [1] proposed a technique of indexing relational da-
tabases to improve the search efficiency. They indexes inter-
connected textual content in relational databases, and do key-
word search over this content. A relational database is crawled
in advance, text-indexing virtual documents that correspond
to interconnected database content. At query time, the text
index supports keyword-based searches with interactive re-
sponse, identifying database objects corresponding to the vir-
tual documents matching the query.

K

————————————————
 Phyo Thu Thu Khine, University of Computer Studies, Yangon, Myanmar.

E-mail: phyothuthukhine@gmail.com
 Htwe Pa Pa Win, University of Computer Studies, Yangon, Myanmar.

E-mail: hppwucsy@gmail.com
 Khin Nwe Ni Tun, University of Computer Studies, Yangon, Myanmar.

E-mail: knntun@gmail.com

International Journal of Scientific & Engineering Research Volume 2, Issue 10, Oct-2011 2
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

Li et al. [2] proposes the concept of tuple units (text objects)

to efficiently answer keyword queries, which are composed of
the most relevant tuples. The tuple units can be generated and
indexed to improve search efficiency. However, existing me-
thods identify a single tuple unit to answer keyword queries.
They neglect the fact that in many cases a single tuple unit
cannot answer a keyword query. It is promising to integrate
several related tuple units to effectively answer keyword que-
ries.

Saint (Structure-Aware INdexing for finding and ranking
Tuple units) [5] proposes a structure-aware index based me-
thod to integrate multiple related tuple units to effectively
answer keyword queries. The structural relationships between
different tuple units are discovered and stored them into
structure-aware indices, and progressively found the top-k
answers using such indices.

ITREKS (Indexing Tuple Relationship for Efficient Key-
word Search) [4] supports efficient keyword-based search over
relational database by indexing tuple relationship: A basic
database tuple relationship, FDJT, is established in advance
and then a FDJTTuple-Index table is created, which records
relationships between each tuple and FDJT. At query time, for
each of keywords, system first finds tuples in every relation
that contain it, using full text indexes offered by database
management system. Then FDJT-Tuple-Index table is used to
find the joinable tuples contain all keywords in the query.

3 OVERVIEW OF PROPOSED SYSTEM
Given a set of query keywords, the system returns the rows

(either from single tables, or by joining tables connected by
foreign-key joins) such that the each row contains all key-
words. Enabling such keyword search requires (a) a prepro-
cessing step called Indexing that enables databases for key-
word search by building the Index Table and (b) a Search step
that retrieves the ranked tuples to the user. Although there are
two steps, we discuss only the indexing mechanism which is
also the core part of the proposed system. The sample data-
base instances from dblp are shown in Fig. 1. The DBLP sche-
ma is shown in Fig. 2.

Proceeding
Id

Proceeding
Title EditorId Publisher

Id
Serie-
sId Year ISBN

1

Recent
advances in
Development
and Use of B
Method

1 1 1 1988
3-540-

6440
5-9

2

Machine
Learning and
Its applica-
tion

42 1 1 2001
3-540-

4249
0-3

3

Mathematical
Models for
the Seman-
tics of Paral-
lelism

44 1 1 1987
3-540-

1841
9-8

(a) Proceeding
InProceedingId InProceeding Title Page ProceedingId

1 Graphical Design of Reactive
Systems

197 1

2 Process Control Engineering:
Contributions

156 262

3 Layering Distributed Algo-
rithms with B Method

260 1

(b) InProceeding
SeriesId SeriesTitle

1 Lecture Notes in Com-
puter Science

2 IFIP Transactions

3 IFIP Conference Pro-
ceedings

PublisherId Name

1 Springer

2 Elsevier

3 North Holland

(c) Series (d) Publisher
PersonId PersonName

1 Didier Bert

2 Emil Sekerinski

3 Jean-Marc Meynadier

PersonId InProceedingId

1 34854

1 34888

2 3910

(e) Person (f) RelationPersonInProceeding
Figure 1. Sample Database Instances

Figure 2. Framework of the System (System Overview)

3.1 Overview of Indexing and Searching Steps
Index Builder: A database is identified. The Index Builder
finds the text attributes in tuple (t) in each table V. After find-
ing, for the set of indices is defined as U, a set of attributes are
found in table V that can be joined with these indices and
create Index Table. Indexing Relational Database algorithm is
proposed for this purpose. An index table is used at search
time to efficiently determine the locations of query keywords
in the database (i.e., the tables, columns, rows they occur in).

Searching Answer: Given a query consisting of a set of key-
words, it is answered as follows.
Step 1: The index table is looked up to identify the tables, and
columns/rows of the database that contain the query key-
words.
Step 2: If the result tuples have the related information (con-
nected tuples in the schema), all the connected tuples are

International Journal of Scientific & Engineering Research Volume 2, Issue 10, Oct-2011 3
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

enumerated.
Step 3: For each enumerated candidate answer sets, a SQL
statement is constructed (and executed) that joins the tables in
the answer sets. Then the final rows are ranked and presented
to the user.

3.2 Indexing a Relational Database
Indexing is also a major concept in information retrieval.

Indexing (or) index construction is applied to gain the fast
speed in the process of retrieval. This approach can be useful
when the database has large number of fields of type Text or
Varchar. A single relation (or table) is a set of tuples (or rows)
each of which can be addressed by some primary key. To in-
dex these rows we extract the data from each row where the
value of each column is text data type in turn and construct an
index. Each value in such a field can be considered as a small
text document that can be used for keyword-based search. To
gain the speed benefits of indexing at retrieval time, we have
to build the index in advance. We propose an indexing algo-
rithm to gain the speed of querying time. We find the records
in the relational tables to be indexed and map them with post-
ings (relation, tuple id). A fragment of IndexTable is shown in
Fig. 2.

Algorithm Indexing Relational Database
Input: A database D, database relations R1, R2…Rn
Output: An IndexTable IT
Begin
1. Scan database D and read the names of relations R1,

R2...Rn.
2. For each relation Ri (i=1 to n) in D do
3. Structure Si Read structure of relation Ri
4. Prefix Ri (substring (3))
5. For each tuple t in Si to length of Si
6. dt data type of t
7. If (dt == "text")
8. For each row ri (i=1 to length of Ri) in Ri do
9. fieldname fn t
10. keywordvalues of fn (ri)
11. mapIdPrefix + "R" + tupleid of ri
12. Store keyword and mapId as curIndex.
13. Store curIndex as tempIndex.
14. End for
15. End If
16. End for
17. If (t >1 && dt == ("text"))
18. curIndex curIndex + tempIndex
19. End If
20. Insert curIndex into IndexTable
21. End for
End

Table 1. A Fragment of IndexTable

Keywords MapId
Graphical Design of Reactive Systems. 182-197 inpR1
Well Defined B. 29-45 inpR2

Process Control Engineering: Contribution to a
Formal Structuring Framework with the B Me-
thod. 198-209

inpR3

Didier Bert perR1
Emil Sekerinski perR2
Jean-Marc Meynadier perR3
B$198: Recent Advances in the Development
and Use of the B Method, Second International
B Conference, Montpellier, France, April 22-24,
1998, Proceedings 1998 3-540-64405-9
http://dblp.uni-
trier.de/db/conf/b/b1998.html

proR1

Machine Learning and Its Applications, Ad-
vanced Lectures 2001 3-540-42490-3
http://dblp.uni-
trier.de/db/conf/ac/ml2001.html

proR2

Mathematical Models for the Semantics of Par-
allelism, Advanced School, Rome, Italy, Sep-
tember 24 - October 1, 1986, Proceedings 1987 3-
540-18419-8 http://dblp.uni-
trier.de/db/conf/ac/parallel1986.html

proR3

Springer pubR1
Elsevier pubR2
North-Hollen pubR3
Lecture Notes in Computer Science
http://dblp.uni-trier.de/db/journals/lncs.html serR1

IFIP Transactions http://dblp.uni-
trier.de/db/series/ifip/transactions.html serR2

IFIP Conference Proceedings http://dblp.uni-
trier.de/db/series/ifip/index.html serR3

3.3 Keyword-based Searching
After the IndexTable is created, our system is ready for

keyword search. Given a user's query consisting of a set of
keywords, the input query is cleaned and matched with In-
dexTable.

The query cleaning phase takes a user entered keyword
query as an input, and produces a “clean” query output. This
is achieved by filtering the stopwords from the keyword.
Keyword queries are often dirty, i.e., they may contain words
that are not intended as part of the queries. First of all, we get
the keywords which user submitted, and then we filter out the
stopwords such as "an", "a", "the" and so on. These words may
appear many times in the tuple tree, but they are meaningless.
If we do not filter them out, the answers with them maybe
returned with great priority and this will not satisfy the users,
then we access to the database in the query process.

The cleaned query is then fed into the query processing
phase where the result is produced. This step finds a set of
tuples TS {ti} (hits) which together match all the keywords in
keyword query S. The MapTable is used to retrieve which
tuples contain keywords.

Once the results are produced, each result is needed to cal-
culate the score. A simple but effective ranking function is
proposed to rank the result for a given query. The score of a
result is assigned in the following way:

International Journal of Scientific & Engineering Research Volume 2, Issue 10, Oct-2011 4
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

where n(k) = number of keywords in a user query,
 count (f(k) = user keyword match keyword occurrence in
 m(U,V),
 scorek = score of each relevant record.

4 EXPERIMENTAL RESULTS
We used 92.1 MB of DBLP dataset to evaluate the perfor-

mance of the system. We implemented with Pentium Dual-
Core 2.0GHz processor and 956 MB of RAM. The system de-
composed the datasets into 6 relations according to the sche-
ma shown in Fig. 2. Table 2 summarizes the 6 DBLP relations.

Table 2. DBLP Dataset Characteristics

Relations Tuples
Inproceeding 208,086
Series 24
Publisher 81
Person 162,907
Proceeding 2,749
RelationPersonInProceeding 491,777
Total 1,357,401

We evaluated the performance of the proposed indexing

algorithm. Fig. 3 shows that the indexing time for each atti-
butes of each realation in DBLP.

Table 1 shows that the IndexTable which is produced in

preprocessing step. Indexing time includes IndexTable (key-
word-posting) producing times and only consumes at index
step.Testing case takes 373,847 rows from all tables. Fig. 4
shows the indexing time DBLP database. It shows that if the
record size of each relation is increased, the indexing time for
this relation is increased. The total indexing time for all rela-
tion only takes 1766 milliseconds (1.8 seconds). It shows that
the proposed indexing mechanism can reduce the indexing
time significantly.

Figure 4. Indexing time for DBLP database

We evaluate search efficiency by submitting conjunctive
keyword queries of length 2, 3, 4 and 5 words. Fig. 5 shows
that the comparison of query processing time between the
proposed method, ITREKS and Saint. We generated 50 queries
for each query length. The figure shows that the proposed
algorithm achieves much higher search efficiency than
ITREKS and Saint. We use the tuple-aware indexing method
to identify the answers through our proposed Index Table,
and thus the proposed method can significantly improve the
search efficiency.

Figure 3. Indexing time for each attribute of
DBLP database's relation

)k(n
))k(f(count

scorek =

International Journal of Scientific & Engineering Research Volume 2, Issue 10, Oct-2011 5
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

Figure 5. Search efficiency

5 CONCLUSION AND FUTURE WORK
We presented a general architecture for supporting key-

word-based search over relational database by indexing con-
tents from the relational database, providing intuitive and
efficient keyword search capabilities over these contents. Our
system trades online search and offline indexing method to do
efficient keyword based search over relational database. The
proposed system provides storage space and offline indexing
time to significantly reduce query time computation compared
to previous approaches. Experimental results show that index
size is manageable and keyword query response time is inter-
active for typical queries. In the future, we will extend our
method to semi-structured data like XML and implement our
system over more databases.

REFERENCES
[1] Qi, S. and Jennifer, W. (2005): "Indexing Relational Database Content Offline

for Efficient Keyword-Based Search." Proceeding of IDEAS, pg-297-306.
[2] Li, G., Feng, J., and Zhou, L.(2008): "Retrieving and Materializing Tuple Units

for Effective Keyword Search over Relational Databases." In ER.
[3] DBLP bibliography.

http://www.informatik.uni-trier.de/~ley/db/index.html
[4] Zhan, J. and Wang, S. (2007): "ITREKS: Keyword Search over Relational Data-

base by Indexing Tuple Relationship." 12th International Conference on Data-
base Systems for Advance Applications (DASFAA).

[5] Li, G., Feng, J., and Wang, J. (2009): "Structrued Aware Indexing for Keyword
Search in Databases". CIKM’09, pp 1453-1456.

[6] Aditya, B., Bhalotia, G., Chakrabarti, S., Hulgeri, A., Nakhe, C., Parag, Sudar-
shan, S. (2002): "BANKS: Browsing and keyword searching in relational data-
bases." VLDB, pp. 1083–1086.

[7] Balmin, A., Hristidis, V., Papakonstantinou, Y. (2004): "ObjectRank: Authority-
Based Keyword Search in Databases." In: Nascimento, M.A., et al. (eds.) Proc.
of the 30th Int’l. Conf. on Very Large Data Bases, Morgan Kaufmann Publish-
ers, San Francisco, pp. 564–575.

[8] Agrawal, S., Chaudhuri, S., Das, G. (2002): "DBXplorer: A system for key-
word-based search over relational databases." In: Agrawal, R., et al. (eds.)
Proc. of the 18th Int’l. Conf. on Data Engineering, IEEE Press, Los Alamitos,
pp. 5–16.

[9] Hristidis, V., Papakonstantinou, Y. (2002). "DISCOVER: Keyword search in
relational databases." In: Bernstein, P.A., et al. (eds.) Proc. of the 28th Int’l.
Conf. on Very Large Data Bases, Morgan Kaufmann Publishers, San Francis-
co, pp. 670–681.

[10] Hristidis, V., Gravano, L., Papakonstantinou, Y. (2003). "Efficient IR-style
keyword search over relational databases." In: Freytag, J.C., et al. (eds.) Proc. of
the 29th Int’l. Conf. on Very Large Data Bases, Morgan Kaufmann Publishers,
San Francisco, pp. 850–861.

[11] Liu, F. Yu, C. Meng,W. and Chowdhury, A. (2006): "Effective keyword search
in relational databases." In SIGMOD, pages 563–574.

[12] Li, G. Zhou, X. Feng, J. Wang, J. (2009): "Progressive Keyword Search in Rela-
tional Databases." ICDE, pp 1183-1186.

[13] Manning,D. Raghavan, P. and Schütze, H, (2009), "An Introduction to Infor-
mation Retrieval." Cambridge University Press.

[14] Yu, J. X. Qin, L. and Chang, L, (2010), "Keyword Search in Databases: A Sur-
vey." IEEE Computer Society Technical Committee on Data Engineering.

[15] Raghavan, P. (2001): "Structured and unstructured search in enterprises." IEEE
Data Engineering Bulletin, 24(4).

[16] Dar, S., Entin, G., Geva, S. and Palmon, E.(1998): "Dtl's dataspot: Database
exploration using plain languages." In Proc. of VLDB.

[17] Wheeldon, R., Levene, M. and Keenoy, K. Search and navigation in relational
databases. http://arxiv.org/abs/cs.DB/0307073.

